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Stability of the Multimegabit Telemetry Carrier Loop
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Basic sampled data loop stability is reviewed; the effect of an additional low-pass filter
in the loop is analyzed. Resulting upper bounds on permissible loop bandwidth are

established.

l. Introduction

The carrier tracking loop of the multimegabit telemetry
demodulator currently under advanced systems development is
of the second order sampled data type. In addition to the
design point damping considerations typical of a continuous or
analog loop, an additional potential instability exists for
excessive gain (Ref. 1). Over and above that limitation, this
intended implementation is confronted with the effects of a
10-kHz roll-off in the response of the Block [V VCO when
operating in the long loop carrier reconstruction mode (Fig. 1
of Ref.2). We will start with a simplified model (Fig. 2 of
Ref. 1), add a low-pass time constant to the open loop transfer
function, generalize the parameters, and develop a design
guideline for this application.

{I. The Model

Proceeding directly from Fig. 1, we can write the open loop
transfer function in the variable z, where z = ¢7:
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where Z % } denotes the z-transform equivalent to the
bracketed Laplace transform. This yields
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For shorthand, let 7=T7 (1 - e—T/Tx);
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lll. The Continuous Equivalent

In order to generalize the parameters into more familiar
terms, let us digress temporarily by applying the approxima-
tion
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for sampling rate 1/T large compared with frequencies of
interest. Similarly,



For brevity we write the sample interval as simply T other
multimegabit authors have used T, or mT.

Then, for an ideal loop (7, = 0), the open loop function
reduces to
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And the closed loop transfer function is
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which is readily recognized as the continuous second-order
loop, where
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IV. Stability Analysis

Hence

Hs) ~ . )

Provided the above approximation is maintained in design
(expressed sometimes as 23, T << 1), the continuous approxi-
mation and equivalences are useful in many aspects of
performance. analysis. But for the purposes of this study, it is
preferred to retain the exact z-transform approach.

Before returning to the exact form, it should be noted that
loop gain variations in A will occur due to AGC and limiter
effects in the range of 10:1. Since
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where subscript “0” denotes design point, and assuming §'(2) =
1/2,

To allow for implementation tolerances, the following analysis
will consider
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Returning now to the sampled data transfer function (1) and substituting equivalences (2) and (3), we obtain
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Rearranging as a ratio of polynomials in z7 1,
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where 7= Tx(l pa T"), as previously defined.

As a partial check on results, set 7 = T, = 0 for the ideal
case:
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It turns out that the principal stability criterion employed in
Ref. 1 is equivalent to requiring that the sum of the bracketed
coefficients in the denominator exceed zero, or
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And that the gain margin may be computed as the ratio by
which it does, such that
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But since T/T, = K;/K; , by equation (2), and K;/K; is to be
implemented on the order of 2~8 (another manifestation of
the 28, T << 1 criterion),
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yielding:
GM ({2 = —;—)= 28 =256 or 48 dB at design point
and

GM(¢? = 8) = 2% = 16 or 24 dB at maximum gain

Holmes’ result of 35.2 dB was probably based on a {2 = 1/4
design point and 4., /A, ~ 8.9, yielding §2max ~2.225 and
GM =27/2.225~57.5 or 35.2 dB.

While it is necessary to design with an adequate gain
margin, it is also required in the “real world” of equation (1)
to maintain the “extra” time constant T, smaller than the
reciprocal frequencies of interest. This situation can be loosely
related as

1
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A rule of thumb is recalled from continuous loop design:

w,T, < 0.05 (12)

But this is too empirical; we need to calibrate the effect of T,
on loop margins or transient performance in order to specify
the design relationships with more rigor. And although it
might be possible to apply numerical stability criteria to
equation (8) as we did above for the ideal case, the approach
taken is to perform the inversion of the z-transform pulse
response function into the time domain and parametrically
evaluate the overshoot of the response to a step input. And,
rather than attempt a formal inversion, an alternate technique
is employed (Ref. 3, p. 57). If the desired pulse response
function is expanded into a power series in z~" by the process
of long division, then the coefficients represent the magnitudes
of the time response at times ¢+ = nT. The mechanics are
handled as follows:

(1) For each parametric set of variables, T, T, T,,and {2,
compute the coefficients for equation (8).

(2) Multiply H(z) by ¢,(z) = 1/(1 - z~1) to obtain ¢,(z) for
a step input and regroup the denominator in z=" series.

(3) Enter the coefficients of ¢,(z) numerator and denomi-
nator in a desk calculator programmed to compute the
first 38 coefficients of the power series.

(4) Plot these coefficients versus t = nT to obtain a sam-
pled version of ¢, (z).

Returning to the problem at hand, it is likely that for a
given sample rate 7, all parameters of Fig. I would remain
fixed with the exception of 4, which will vary with input
signal SNR as noted above. Intuitively, then, a given constrain-
ing value of T, is most likely to have the greatest impact for
the widest bandwidth, i.e., strong signal. Take, then, as a
starting point {2 = 8. Arbitrarily, set T, = 16 as a convenient
scaling within the 38T-second window offered by the calcu-
lator program.

As an initial value for 7, use (12):
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What, then, in our scale model loop, should we use for 77 A
true scaling would set

1
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This would provide us only with ¢+ = nT = 38/16-second
visibility due to the limited range of the program. Let us
reduce the gain margin of our scale model slightly and let T'=
1/10, providing ¢ = 38/10 =~ 4 seconds.

Taking, now, as a baseline T, = 16, §2 =8, 7= 1/10, and
T, =0, we obtain
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and for T = 1/8,
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The resulting time series are plotted in Fig. 2. We note that
the “rule of thumb” value of w, T, results in a discernable,
but inconsequential, change in transient response. Recalling
that the overshoot of the ideal loop with {2 = 1/2 design point
damping is approximately 20 percent, let us keep increasing
T, parametrically until some arbitrary upper bound is reached.
A value of 40 percent is taken as a likely upper limit of
desirable response. Values of T, = 1/4, 1/2, 1 are seen in Fig. 2
to cover this range.

In order to evaluate the sensitivity of the arbitrary
reduction in gain margin for this scale model, we can plot peak
overshoot (evaluated as above) versus T.

From Fig. 3 we can conclude that for 7= 1/10 or even 1/8,
the model closely approximates the actual design at a gain
margin of 24 dB.*

*Strictly speaking, gain margin as defined in (10) is not applicable in
the presence of 7,; however, it remains a useful, well-defined
characteristic.
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Now that a tentative worse case T,/T, = 1/16 has been
established, it would be useful to vary {2 as a parameter, thus
validating ¢2 = 8 as the maximum overshoot condition.
Figure 4 presents the full range of {2 in octave steps for both
T./T, = 1/16 and T, = 0. In order to fit the region of interest
in = nT as {2 is varied, several different values of T were
employed, always keeping the modelled gain margin of 18 dB
or better (see Fig. 3), thus maintaining reasonable accuracy.

V. Conclusions

We have seen that the multimegabit sampled data loop may
be closely approximated as a continuous loop and that the
gain margin may be readily computed as

GM=_?_2___.__£
% T 2% K

whatever the detailed design may be. Additionally, Figs. 2 and
4 offer a basis for specifying maximum tolerable extra time
constant or, conversely, the maximum tolerable nominal
bandwidth for a given T..

For example, from the figures, one could specify that for
8> ¢2 > 1/2, and overshoot comparable to the ideal at {2 =
1/2:
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Alternatively, for 8 = ¢ > 1/4, and overshoot less than 40
percent,

T
X
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for a 28, T, product < 3/32 at §‘(2) = 1/2. In any case, this

approach offers a relatively exact analysis and perspective on
the compound effects of gain margin and extra time constant.
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Fig. 1. Simplified loop model with VCO roll-off

0.5 L | | 1

A
0.3 0.5 1.0 2.0
t =nT, seconds

Fig. 2. Transient response vs extra time constant
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Fig. 3. Sensitivity of overshoot to gain margin
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Fig. 4. Transient response vs damping




